
以下是希望大家学完这门
课之后能够留下的记忆

并非和考试直接相关

冯·诺依曼结构

1. 各基本部件的功能是：
• 存储器存放数据、指令，都是二进制，但能区分；
• 控制器自动取出指令来执行；
• 运算器进行算术逻辑等运算；
• 通过输入设备、输出设备和主机进行通信。

2. 采用“存储程序”工作方式。

不同层次语言之间的等价转换

每条指令由操
作码和若干地
址码组成

任何高级（汇编）语言程序最终都要通过执行机器指令来完成！
高级语言程序和汇编（或机器）语言程序都是一对多的关系
汇编语言程序和机器语言程序肯定是一对一的关系

指令集体系结构（ISA）

• ISA指Instruction Set Architecture，即指令集体系结构

• ISA规定了如何使用硬件，
– 核心是指令系统，包括指令格式、操作种类以及每种操作

对应的操作数的相应规定；指令可以接受的操作数的类型；
指令中操作数的寻址方式；

– 操作数所能存放的寄存器的名称、编号、长度和用途；
– 操作数所能存放的存储空间的大小和编址方式；
– 操作数在存储空间存放时按照大端还是小端方式存放；
– 指令执行过程的控制方式，包括程序计数器、条件码定义

等。

数据的编码

• 在机器内部编码后的数称为机器数，其值称为真值
• 定义数值数据有三个要素：进制、定点/浮点、编码
• 整数的表示
– 无符号数：正整数，就是二进制，用来表示地址等；
– 带符号整数：用补码表示；

• 浮点数的表示
– 符号位；
– 尾数：定点小数；
– 指数（阶）：定点整数（基不用表示）

• 浮点数的范围：与阶码的位数和基的大小有关
• 浮点数的精度：与尾数的位数和是否规格化有关

数据的宽度和存储

• 数据的宽度

– 位、字节、字（不一定等于字长），k/K/M/G/…

• 数据的存储排列

– 数据的地址：连续若干单元中最小的地址，即：从
小地址开始存放数据

• 若一个short型（16位）数据si存放在单元
0x0100和0x0101中，那么si的地址是什么——
0x0100

– 大端方式：用MSB存放的地址表示数据的地址

– 小端方式：用LSB存放的地址表示数据的地址

• 逻辑门是最基础的数字电路，可通过
CMOS晶体管实现
– 门符号、逻辑运算符、真值表、逻辑表

达式、运算优先级。。。
– 与、或、非、与非、或非、异或

CMOS晶体管
– PMOS和NMOS
– 常用CMOS门电路
– 非、与非、或非
– 与 (与非-非）、或
– 缓冲器、传输门

数字逻辑基础

7

数字逻辑基础

• 最基本的逻辑运算有与、或、非三种运算，对应的逻辑门分
别为与门、或门和非门

• 布尔代数、公理系统、对偶定律等基本概念。

• 通常使用真值表、逻辑表达式来描述逻辑变量间的关系

• 可使用代数法、卡诺图等来化简逻辑表达式（参考作业题）

• 在实现数字系统时，为了提高速度、降低成本，通常利用与
非门和或非门来构建电路。

• 等效逻辑符号（电路）——

• (德摩根定理的利用）

8

组合逻辑电路

• 数字逻辑电路由若干元件（可以是一个电路）和若干结点互连而成

• 组合逻辑电路的输出值仅依赖于当前输入值

• 组合逻辑电路可以是两级电路或多级电路，两级电路的传输时间短，但
占用集成电路物理空间更多，需进行时空权衡

• 组合逻辑电路设计：功能分析-列表-化简-逻辑表达式-画图-评价（参考
作业题）

• 无关项指输出取值可任意的项，真值表中用d表示，可用于化简

• 非法值指同时被高、低电平驱动的输出结点的值。

• 高阻态是三态门输出结点的一种非正常逻辑态，相当于“断开”

• 典型组合逻辑部件：译码/编码器、多路选择/分配器、半加/全加器

• 传输延迟：关键路径上所有元件的传输延迟之和

• 最小延迟：最短路径上所有元件的最小延迟之和

9

时序逻辑基本元件

10

 SR锁存器

 置位端(S)/复位端(R)；用于设置标志信息

D锁存器

 控制端C有效时，锁存数据D

D触发器

 时钟触发边沿开始后，经过Clk-Q时间，Q变成D；输入端D在时钟触
发边沿到来前，须稳定Setup时间；之后须继续保持hold时间

 可带EN控制端、置位/清零控制端

 T触发器

 由D触发器构成，T连接Clk，D连接Q，每个时钟发生状态变化

时序逻辑电路

• 时序逻辑电路不仅依赖当前输入，还依赖电路当前的状态
• 可用状态图或状态表描述有限状态机，圈表示状态，有向边表示输入/输出

• 时序电路设计：功能分析-状态图-状态化简和编码-逻辑表达式-画图-评价
（参考作业题）

• 未用状态分析(挂起/无法自启动)
• 定时分析(clk-Q时间、时钟周期、setup时间、hold时间)——有助于理解

后续的CPU设计

• 典型时序逻辑部件：计数器、寄存器/通用寄存器组、移位寄存器

11

存储器的结构和基本概念

• 存储器可用来存储数字电路中的数据。

– 寄存器（由触发器构成）用来存储少量数据，速度快
– 存储器阵列用来存储大量数据，速度比寄存器慢

• 存储器阵列中每位数据对应一个记忆单元（cell），称为存储元

12

8×4位存储器阵列 4KB存储器阵列2n×m位
存储阵列

地
址

n

m

存储
阵列

000
001
010
011
100
101
110
111

0 1 0 0
0 0 1 1
0 1 0 1
1 0 1 1
1 1 0 0
1 0 1 1
0 1 1 0
1 0 0 0

数据

4096字×8位
存储阵列地

址

12

8

数据

ROM，RAM
• 按功能可分为：只读存储器(Read-only Memory，ROM)

和随机存取存储器(Random-access Memory, RAM)

– ROM属于非易失性存储器，即使电源断电，ROM中存
储的数据也不会消失

• 例如存放BIOS自检启动程序的地方

• 例如微程序控制器中的CS（控制存储器）

– RAM属于易失性存储器, 一旦电源断电，RAM中存储的
数据就消失。

• 静态RAM（Static RAM，SRAM）

• 动态RAM（Dynamic RAM，DRAM）

13

运算部件的设计

• ALU的实现

– 加法器是基础（全加器）

– 加法器需要进行标志位的计算（有符号数和无符号数都
共用同一套标志位计算方法，但标志的用法不一样）

– 算术逻辑单元ALU：实现基本的加减运算和逻辑运算。

– 加法运算是所有定点和浮点运算（加/减/乘/除）的基础，
加法速度至关重要

– 进位方式是影响加法速度的重要因素

– 并行进位方式能加快加法速度

运算部件的设计

逻辑运算、移位运算、扩展运算等电路简单（如算术移位、逻辑移位、
0扩展、符号扩展等）

主要考虑算术运算
• 定点运算涉及的对象

无符号数；带符号整数(补码)；
原码小数；移码整数

• 加减运算

– 补码加/减运算：用于整数加/减运算。符号位和数值位一起运算，
减法用加法实现。可判断溢出。

– 无符号数加/减运算：加法直接加；减法用加负数补码实现。可
判断溢出。

运算部件的设计

乘法运算：（关注思路，参考作业题）
无符号数乘法：“判断”，“加”，“右移”
原码乘法：符号和数值分开运算，数值部分用无符号数乘法实现，用于

浮点数尾数乘法运算。
补码乘法：符号和数值一起运算，采用Booth算法。

– n位 x n位，结果机器数可获得高n位和低n位。
– 高n位可用来判断溢出，也可直接作为乘积的高位（肯定不溢出）。

 除法运算：（不考）
 无符号数除法：用“加/减”+“左移” ，有恢复余数和不恢复余数两种。

 原码除法：符号和数值分开，数值部分用无符号数除法实现，用于浮点数
尾数除法运算。

 补码除法：符号位和数值位一起。

指令系统
 操作类型

– 传送 / 算术 / 逻辑 / 移位 / 字符串 / 转移控制 / 调用 / 中断

 操作数类型

– 整数（带符号、无符号、十进制）、浮点数、位、位串

 地址码的编码要考虑：

– 操作数的个数

– 寻址方式：立即 / 寄存器 / 寄间 / 直接 / 间接 / 偏移 / 堆栈

 操作码的编码要考虑：

– 定长操作码 / 扩展操作码

 条件码的生成：四种基本标志：NF（SF） / VF（OF） / CF / ZF
 如何控制“周而复始的执行指令”呢？

——隐式的自动按顺序取

——显式的在指令中给出“下条指令地址”

——条件测试后计算出“转移目标地址”

 指令设计风格：

» 复杂指令集计算机CISC、精简指令集计算机RISC

 指令格式

– 定长指令字：所有指令长度一致

– 变长指令字：指令长度有长有短

 RV32I

指令系统

具体指令和RTL

lui rd, imm20

add/sub/or… x10, x12, x14

slt x11, x10, x12

addi/subi x5, x5,-1

ori/andi rd, rs1, imm12

slti rd, rs1, imm12

jal rd，,imm20

bne/beq x28, x29, imm12

lw rd, imm12(rs1),

sw rs2, imm12(rs1)

RTL规定：

R[r]：通用寄存器r的内容
M[addr]：存储单元addr的
内容

M[R[r]]：寄存器r的内容所指
存储单元的内容

PC：PC的内容

M[PC]：PC所指存储单元的
内容

SEXT[imm]：对imm进行符
号扩展

ZEXT[imm]：对imm进行零
扩展

传送方向用←表示，即传送
源在右，传送目的在左

CPU基础
• CPU设计直接决定了时钟周期宽度和CPI，所以对计算机性能非常重要！
• CPU主要由数据通路和控制器组成

– 数据通路：实现指令集中所有指令的操作功能
– 控制器：控制数据通路中各部件进行正确操作

• 数据通路中包含两种元件
– 操作元件（组合电路）：ALU、MUX、扩展器、Adder、Reg/Mem

Read等
– 状态 / 存储元件（时序电路）：PC、Reg/Mem Write

• 数据通路的定时
– 数据通路中的操作元件没有存储功能，其操作结果必须写到存储元件中
– 在时钟到达后clk-to-Q时存储元件开始更新状态

• RV32I指令集的一个子集作为CPU的实现目标

单周期处理器

单周期CPU小结
– 每条指令在一个时钟周期内完成

– 每个时钟到来时，都开始进入取指令操作

• 经过clk-to-Q，PC得到新值，经过access time后得到当前指令

• 按三种方式分别计算下条指令地址，在branch / zero / jump的控
制下，选择其中之一送到PC输入端，但不会马上写到PC中，一直
到下个时钟到达时，才会更新PC。三种下址方式为：

– branch=jump=0：PC+4

– branch=zero=1： PC+SEXT(imm12)*2

– jump=1： PC+SEXT(imm20)*2

• 同时按控制信号完成当前指令所特有的操作

– 汇总每条指令控制信号的取值，生成真值表，写出逻辑表达式，设计
控制器逻辑——控制单元对指令进行译码，与指令执行得到的条件码
或当前机器的状态、时序信号（时钟）等组合，生成对数据通路进行
控制的控制信号。

单周期和多周期CPU对比

• 单周期处理器的设计

– 每条指令都在一个时钟周期内完成

– 时钟周期以最长的Load指令所花时间为准

– 无需加临时寄存器存放指令执行的中间结果

– 同一个功能部件不能重复使用

– 控制信号在整个指令执行过程中不变，所以控制器设计简单，只要写出
指令和控制信号之间的真值表，就可以设计出控制器

• 多周期处理器的设计

– 每条指令分成多个阶段，每个阶段在一个时钟内完成

– 时钟周期以最长的阶段所花时间为准

– 不同指令包含的时钟个数不同

– 阶段的划分要均衡，每个阶段只能完成一个独立、简单的功能

– 需加临时寄存器存放指令执行的中间结果

– 同一个功能部件能在不同的时钟中被重复使用

– 可用有限状态机表示指令执行流程，并用PLA或微程序方式设计控制器

流水线CPU
• 流水线CPU的设计

– 将每条指令的执行规整化为若干个同样的流水阶段
– 每个流水阶段的执行时间一样，都等于一个时钟
– 理想情况下，每个时钟有一条指令进入流水线，也有一条指令执行结束

（指令吞吐率增大、CPI约等于1、单条指令实际所需时间增大）
– 每两个相邻流水段之间的流水段寄存器，用以记录所有在后面阶段要用

到的各种信息（包括指令译码得到的控制信号）
• 结构冒险（资源冲突）及其解决方法
• 数据冒险（数据相关）：前面指令的结果是后面指令的操作数

– 软件阻塞（加nop指令）、硬件阻塞（插入“气泡”）
– 寄存器前半周期写后半周期读、编译优化、“转发”（旁路）
– 对于load-use，采用“阻塞加转发”的方式解决数据冒险

• 控制冒险（控制相关）：目标指令地址产生前已经有指令被取到流水线
中，如果这些指令不该被执行，则发生控制冒险。
– 软件阻塞、硬件阻塞、延迟分支技术
– 采用“分支预测”技术：静态预测或动态预测
– 异常和中断也是一种特殊的控制冒险

研究领域背景 重点研究问题

研究目标：面向大数据与AI应用的云原生系统基座

学术论文发表 行业落地应用

顾 荣 南京大学 计算机学院 副教授(特聘研究员，博导)

 教育部青年长江学者、达摩院青橙奖获奖者(2023)、Fluid开源社区主席

• AI模型推理服务性能优化

• 大模型在云平台训练加速

• 云原生平台资源管理调度

• 数据库系统查询性能优化

• …

基础性计算机课程知识：

计算机组成原理、数字逻辑电路、
操作系统、数据结构、计算机网
络、大数据系统等

